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The results of a study of the characteristics of heat transfer accompanying flow 
around bodies of different shape at the angles of attack are presented. 

There are a number of ~rks devoted to the solution of the problems of coupled heat trans- 
fer with axisymmetrie flow around bodies [1-3]; the effect of a nonisothermal temperature of 
the surface on the heat flux to the wall accompanying flow around flat bodies was studied in 
[4]. It is of interest to study nonstationary heat transfer accompanying supersonic flow of 
a perfect gas around differently shaped bodies at the angles of attack for different flow re- 
gimes in the boundary layer. 

In accordance with [2, 3], we shall seek the characteristics of the coupled heat trans- 
fer from the solution of the equations describing the change in the averaged quantities in the 
boundary layer and the nonstationary heat conduction equation in the envelope of the body with 
the corresponding boundary and initial conditions. 

We shall study a three-dimensional flow having a symmetry plane. We choose on the surf- 
ace of the body in the flow a curvilinear nonorthgonal coordinate system centered on the stag- 
nation point [5]. Then, from the general system of equations of a three-dimensional boundary 
layer [6], with the help of an expansion accurate up to second-order infinitesimals in the 
circumferential coordinate it is possible to write out the system of equations for the bound- 
ary layer near the symmetry plane; after the introduction of the stream functions f and 
and the Dorodnitsyn-Liz variables, using the notation adopted in [5], it assumes the form 
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Assuming the  p r o c e s s  i s  o n e - d i m e n s i o n a l ,  t he  n o n s t a t i o n a r y  e q u a t i o n  of hea t  c o n d u c t i o n  in  the  
m a t e r i a l  of  the  body in  an o r t h o g o n a l  c o o r d i n a t e  sys tem t i e d  to  the  symmetry a x i s  of a body 
of  r e v o l u t i o n  has  the  form 
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The boundary and initial conditions are written as follows: 

a/ (~ ,  s )=  1, a~ a-: ~ (~ '  ~) :-: i, g (~ ,  ~ ) :  i, (s) 

of (0, s)= a,c aS - ~  (0, s)=0, f(0, s)=(p(0, s)--0, (6) 
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The three-dimensional turbulent flow is described with the help of a two-layer model of 
a turbulent boundary layer [7], presented in [5]. 

In the transitional region from the laminar regime to the turbulent regime the flow was 
calculated as in [5] using the coefficient of longitudinal intermittency [8, 9]. 

The pressure distribution on the outer boundary of the boundary layer was fixed by New- 

tonis formula: pffp~o~cosZO ( v ~  I z ~ , where 0 is the angle between the velocity vector of 
\ v ~ /  

the incoming flow and the normal to the surface at a running point. 

The relations for calculating the quantities on the outer boundary of the boundary layer 
as well as the coefficients of the asymptotic system of equations in the vicinity of the stag- 
nation point are given in [5], 

The boundary-value problem (1)-(8) was integrated numerically with the help of the itera- 
tion-interpolation method of [i0]. The general method for calculating the coupled problem 
follows from the quasistationary formulation in the gas phase and is linked with the systema- 
tic solution of the system of equations in the gas phase and the equations of heat conduction 
in the body [2]. 

In carrying out the numerical calculations the shape of the bodies in ~e flow (second- 
order surfaces were studied), the angles of attack, the Re number, and the coupling parameter 

S =]/~ Pr %e0 were varied. The thermophysical characteristics of the material were assumed 

to be constants; Pr = 0.72 and Pr T = I. 

We shall examine the results of the solution of the boundary value problem (1)-(8) for 
the case of laminar flow in the boundary layer. Figure la shows the distributions of the 
dimensionless heat flux qw and the surface temperature @w(~) = Tw/Teo along the plane of sym- 
metry of an ellipsoid of revolution, oriented in the flow at an angle of attack a = i0 ~ at 
different times. Here ~ is the length of the arc measured from thesymmetry axis of the body 
while the x's denote the values at the stagnation points. The equation of the surface in 

22 2 the flow in a Cartesian coordinate system tied to the symmetry plane has the form k x s + Ys + 
z 2 = I, where k is the ratio of the semiaxes S 

The solid curves in Fig. i were obtained for an ellipsoid with k = 3.07; the broken curves 
were obtained for an ellipsoid with k = 0.5. Here ~/~e = T/~7~e, Te~ = 1210 K, 0 n = 0.248, S = 

3.186, L/R~-~O,I, -;- In,=n!~N ~-0 . For oblate ellipsoids (k > I), oriented in the flow under 
Gnl 

different angles of attack (0 < a < 30~ the maximum of the initial value of qw is realized 
on the lateral surface on the--upstream side of the flow, which with time leads to a maximum 
surface temperature in this region. For prolate ellipsoids (broken curves) oriented at mod- 
erate angles of attack the maximum heat flux and therefore the maximum surface temperature are 
realized at the stagnation point; increasing the angle of attack to 20-30 ~ leads to some shift 
in the maxima of qw and e from the point of stagnation on the downstream side toward the point 
of the maximum curvature ~f the generatrix of the body in the flow x s = l/k, Ys = Zs = 0. 

Near the plane of symmetry the following formula was obtained for the ratio of the heat 
fluxes with the help of the method of successive approximations [ii, 12] for the case of a non- 
isothermal surface: 
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Fig. l. Distribution of the dimensionless heat flux and surface 
temperature along the plane of symmetry at different times: a) 
T = 0 (i) and 0.02 (2); b) T = 0 (i) and 0.01 (2). 
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Here qx~(0) corresponds to the heat flux at the point of stagnation; 6g(O), can be written as 
follows using the expansion of t]he functions near the critical point: 

,,~ , a  r - , v .~a  I / 2 6~ (0) = / 1 R~ (0) / B~ (0) = 0,068 + u,uo,,:,~o. (10)  
Pr Boo (0) [ 1 + 

] 

It follows from an analysis of the formula (9) as well as the results of the numerical 
calculations that the second term associated with the derivative 20/~S, can make a signifi- 

~7 cant contribution to the value of the coefficient of heat transfer zn the case of a noniso- 
thermal surface, while the parametric excess of the values @w = const has virtually no effect 
on the ratio qw(S)/qw(0 ). The effect of the nonisothermal nature ofthe surface temperature 
on the heat-transfer coefficient is shown in ~o. 2a, which shows an analysis of the numer- 

ical solution, given in Fig. la, in the form of the ratio of the numbers St/St'(0)---~ qw(s) / 
1 - - e A s ) /  q,,,(o) 

for different times. Here, like in Fig. la, the broken curves correspond to k = 0.5, 
1 - - % ( 0 )  
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the solid curves correspond to k = 3.07, the curves I were obtained for T = 0, e w = O n = const, 
the curves correspond to T = 0.02 and variable surface temperature, and the dots are the data 
obtained for T = 0 from the formula (9). As follows from Fig. 2a, for constant and variable 
surface temperatures the values of St/St(0) can differ significantly. In regions of positive 
gradients ~0 /~S the numbers St/Sto decrease, while for negative values of ~@ /~S they increase 

�9 W " 

compared wit~ the isothermal case mn accordance with (9). This can lead to a significant un- 
derestimation of the surface temperature in the regions where ~Ow/DS < 0 in the calculation of 
the temperature field in the body using the coefficient of heat transfer from the gas phase 
for the case 0 w = const. Analogous results are presented in [4], where subsonic flow around 
nonisothermal bodies was studied. 

Comparison of the results of the solution of the exactly formulated problem taking into 
account the coupled heat transfer (curves I) with the results of the solution of a separately 
formulated problem are presented in Figs. 2b and c for �9 = 0.02. Here and in Fig. 3 the curves 
2 correspond to the solution of the heat conduction equation with a fixed heat flux from the 

gas phase in the form q~(s)-- qw(s) qw (0) , where the ratio qw(S)/qw(O) was taken from (9), 
q~ (o) 

while the heat flux qw(0) was calculated using the formula [12]: 

q~, (0) 0 0 q~(O) = ~ q ~ ( ) .  (11) q~ (o) 

Here q~(O)/q~(O) = Ff 2--I .(I+R- ~RI(0) J) , q~(0) is the value of the heat flux near the critical 

point with axisymmetric flow, for which the well-known formulas of [13], written out for the 
case of a perfect gas, were employed. The curves 3 correspond to the case when the second 
term in the formula (9) was neglected, i.e., 8 = 0; the expression for ~ (s) was also simpli- 

g 

fled. The curves 4 were obtained for the case when the expression q~, (s)= \q-~ qw(0) , where 

q,-~1 was chosen for the starting isothermal temperature of the surface, was employed for 

the heat flux from the gas phase. The curves 5 were obtained using the flux qw(s)= St(s) 
[1 - -  O~ (s)] St  (0) 

qw(O) where  t h e  r a t i o  S t ( s ) / S t ( O )  was t a k e n  i n  f r o n t  o f  OwH. We n o t e  t h a t  t h e  
[ i  - -  O~ (0)1 

curves 4 and 5 correspond to fixing the coefficient of heat transfer from the gas phase for 
an isothermal surface. 

As follows from a comparison of the curves 8w(S) , the results of the solution of the prob- 
lem in the exact and uncoupled formulations are in fairly good agreement, if the formulas (9) 
are employed for the heat flux. If in fixing the heat flux from the gas phase only the his- 
tory of the development of the thermal boundary layer is taken into account and the value of 
the local derivative ~0w/~s is neglected, then the surface temperature is underestimated for 
those regions where ~0 J~s < 0. In addition, for oblate ellipsoids=the maximum discrepancy 
in 8 is observed on tee upstream side and reaches, for example, 15% for k = 3.07 in the sec- 
tionW~ = 1.07, while for prolate ellipsoids this maximum discrepancy with respect to the sur- 
face temperature is realized on the downstream side and equals 13% for k = 0.5 in the section 

=--0.97. In this case, if in the uncoupled formulation of the problem the coefficient of 
heat transfer from the gas phase is fixed for an isothermal surface, the error is substantial- 
ly higher in this approach (curves 4). 

Figure 3 shows the d}mamics of the variation of the surface temperature as a function of 
time for the exact and separate formulations of the problems. As follows from the figure, 
the differences in the determination of the surface temperature based on the approaches stud- 
ied increased with time. 

It should be noted that starting with some value of s, corresponding to a change in the 
direction of flow relative to the symmetry plane, the error of the formulas (9) increases sub- 
stantially and therefore the error in the determination of 0 with the help of the approximate 
approaches based on the uncoupled formulation also increasesWsignificantly. 

The calculation of the boundary-value problem (1)-(8) showed that for theadiabatic con- 
dition on the inner ~ii of the envelope for large values of T the temperature across the en- 
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Fig. 2. Relative Stanton number and the surface temperature along 
the plane of symmetry at different times: a) T = 0 (I) and 0.02 
(2); b) k = 3.07; c) k = 0.5. 
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Fig. 3. Surface temperature as a function of time 
for different values of ~: a) k = 3.07 and b) 0.5. 

velope is equalized and equal sLthe radiative equilibrium temperature, which was determined in- 
dependently from the problem (1)-(3), (5), and (6) with the balance equation for conservation 
of energy: 

q~ (0, s) I/R-e- Pr X~o 4 -~ soe~r. (12) 
kl, 

For E = 0.7 and the computed data in Fig. la the parameter ~ is small, and the distribu- 
tion 0wr is close to the value of the adiabatic surface temperature @wa" As the stagnation 
temperature Teo increases T o increases and @wr decreases compared with @wa and varies along 
the circumference much more strongly. 

Figure 4a shows, according to the results of Fig. la for k = 3.07, the dependence of the 
ratio of the Stanton numbers 

S t / S t . =  qw(s) [l--@wi(s)] 
[ 1 - -  o ~  (s)] q~ ~ (s) 

on 0w, where St i corresponds to t h e  starting isothermal surface temperature, for different 
values of the coordinate along the circumference of the body. The broken curves of St/St i 
correspond to the results of the integration of the system of boundary-layer equations for 
different isothermal values of 0 . 

w 
In the vicinity of the point of stagnation (curves i) the computational results based 

on both formulations are in agreement; on the lateral surface they can differ qualitatively. 
For this reason, as pointed out above, the use of the law of heat transfer for an isothermal 
wall will lead to significant errors in 0 on the upstream and downstream sides. 

W 

We shall examine the results of the solution of the boundary value problem in the pres- 
ence of laminar, transitional, and turbulent regions of flow in the boundary layer. Figure 
ib shows the behavior of qw(~), @w(~) for Re = 5.7,10 ~. Comparison of Figs. la and b shows 
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Fig. 4. Relative Stanton number St/St i versus the surface temp- 
erature in different sections ~ (k = 3.07); a) ~ = 0.47 (i), 
0.97 (2), 1.07 (3); 5) ~ = 1.037 (I), 1.075 (2). 

that in the region of a developed turbulent flow the heat fluxes are significantly stronger 
than the corresponding initial values for the laminar boundary layer. It is important to note 
that in this case the maximum heat fluxes to the body, reached on the upstream side, are close 
for different shapes of the blunt end, unlike the laminar flow regime. As the calculation 
showed, for oblate spheroids with k > 2 the region where the maximumheat fluxes are reached 
shifts insignificantly compared with the zone of the maximum of qw(S) for the laminar flow 
regime, while changing the angles of attack up to 15 ~ has virtually no effect on the value and 
position of the maximum heat flux, We note that for large Re numbers, like in the case of 
axisymmetric flow, the position and magnitude of the maximum heat flux is independent of 
whether or not the transitional flow region is taker into account. 

The above-noted features of the behavior of the heat flux along the generatrix for an 
isothermal surface determine in the solution of the coupled problem the distribution of the 
surface temperature of the body. As follows from Fig. 15, the values of the maximum tempera- 
tures of the surface for the up- and downstream sides with k = 0.5 at different times are 
close, while the qualitative change in the behavior of ew(S , T) compared with Fig. la is a 
result of the change in the flow regimes. 

For an oblate ellipsoid (k = 3.07) the temperature on the downstream side exceeds with 
time the level 0 on the upstream side. This is attributable to the fact that as the temp- 

.w 
erature factor increases (both in the solution of the problem with heating and in the case 
T = const) laminar and transitional flow regions, for which the coefficient of longitudinal 
intermittency r is much less than i, are observed on the studied part of the upstream side. 
On the downstream side the coefficient of intermittency s increases from 0 to I as the point 
of instability moves along the symmetry plane and reaches the developed turbulent flow regime 
with larger values of qw than on the upstream side. 

It is obvious that to find qw(S) it is important to have a criterion for determining the 
point of instability and the coefficient of intermittency r, and for this reason it is impor- 
tant to have additional information in order to refine their values for the case of three- 
dimensional flow in the boundary layer. 

The results of the calculation performed for k = 3.07 are presented in Fig. 4 in the form 
of the dependence St/St..(O ). The broken curves show the data from the numerical integration 

w 
of the system of equations of a turbulent boundary layer for isothermal values for the wall. 
One can see that in this case the qualitative similarity in the behavior of the curves is pre- 
served, but the quantitative difference is significant. For this reason the use of the law 
of heat transfer, found for the case of an isothermal wall, can also lead to a significant 
underestimation of the surface temperature. Analysis of the magnitude of the heat flux, per- 
formed in 14], showed that qw(S) for the turbulent flow regime also depends on BTw/~S, but 
this dependence is weaker th~n in the case of a laminar boundary layer. �9 

NOTATION 

f and ~ , dimensionless stream functions; ~f/8~ = U/Ue, 3 /~ = ~/~e, dimensionless ve- 
locity components; g = H/Heo , dimensionless enthalpy; ~, : X,/X**, ~p = p~c~/p~,c~,, ~ : 
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OT I ]/~ Reynolds eoTgolX1,, dimensionless parameters; Re=peovmRN/[,eo vm= ]/2-~0, q~ =lw-~y ~o vmpe0He0 " 

number, the maximum velocity, and the dimensionless heat flux; T = t/t,, @ = T/Teo , dimension- 
less time and temnerature; t = Phi0: c~,/Xi , characteristic time; ~ and L~ characteristic 
size and thickness of the envelope; H~ = 1 -- h~/R, r~ = rwl -- nl cos ~, Lame coefficients, 
where rw, is the distance from the axis of symmetry to the generatrLx; R, radius of curvature 
of the generatrix; e, angle formed by the generatrix and the symmetry axis; n, = --n/RN, where 
n is the normal to the outer contour of the envelope. The indices e, e0, and w correNpond to 
quantities on the outer boundary of the boundary layer, on the outer boundary at the point of 
stagnation, and on the surface of the body. The index 1 corresponds to the characteristics 
of the solid body and * denotes characteristic values. 
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